LEAD AND ASBESTOS SURVEY OF EAST MARTELLO BATTERY NVSTA KEY WEST, FLORIDA INSPECTION PERFORMED BY NAVY PUBLIC WORKS CENTER PENSACOLA, FLORIDA ### **TABLE OF CONTENTS** **EAST MARTELLO BATTERY** BUILDING **DRAWING #** **DESCRIPTION** EAST MARTELLO BATTERY NO DRAWING **BATTERY** ## LEAD AND ASBESTOS SURVEY OF EAST MARTELLO BATTERY INSPECTION PERFORMED BY NAVY PUBLIC WORKS CENTER PENSACOLA, FLORIDA - 1.0 ASBESTOS. This narrative addresses the inspection, findings, conclusions, and lab analyses performed by Code 468, NPWC Pensacola pertaining to suspect asbestos-containing-material (ACM) in subject buildings. - 1.1 All asbestos inspection and sampling was performed by EPA trained and certified asbestos inspectors. - 1.2 This table contains a listing of all Asbestos-Containing-Material (ACM) and those materials that were assumed to contain asbestos in the subject building. Material may be assumed positive for asbestos when that material has previously tested positive for the presence of asbestos or the material is inaccessible by typical sampling techniques. | HOMOGENEOUS
AREA/MATERIAL | LOCATION | APPROX.
QUANTITY | CONDITION
FRIABILITY
CONTACT | |-----------------------------------|------------------------------|---------------------|------------------------------------| | | East Martello Battery | | | | HOMO A/ 9"x9" BROWN
FLOOR TILE | ROOMS 4, 5, 6 | 300 ft² | FAIR
NON
HIGH | | HOMO B/ 12" VENT PIPE | EXTERIOR TOP OF
STRUCTURE | UNKNOWN | FAIR
NON
HIGH | NOTE: POTENTIAL FOR CONTACT OF ACM IN THE BUILDING IS LOW IF ACCESS IS RESTRICTED. Peally. * FOR LAB ANALYSES OF ASBESTOS SAMPLES SEE APPENDIX A ### SEE PRINTS FOR ACM HOMOGENEOUS AREA LOCATIONS. ### 1.3 DEFINITIONS. ### 1.3.1 Asbestos Containing Materials (ACM) Surfacing Materials - ACM sprayed or troweled on surfaces (walls, ceilings, structural members) for acoustical, decorative, or fireproofing purposes. This includes plaster and fireproofing insulation. Thermal System Insulation - Insulation used to inhibit heat transfer or prevent condensation on pipes, boilers, tanks, ducts, and various other components of hot and cold water systems and heating, ventilation, and air conditioning (HVAC) systems. This includes pipe lagging, pipe wrap, block, batt, and blanket insulation; cement, "muds"; and a variety of other products such as gaskets and ropes. Miscellaneous Materials - Other, largely nonfriable products and materials such as floor tile, roofing felt, concrete pipe, outdoor siding, and fabrics. - 1.3.2 Friable Materials Material that, when dry, may be crumbled, crushed, pulverized, or reduced to powder by hand pressure, and includes previously non-friable material after such previously non-friable material becomes damaged to the extent that when dry it may be crumbled, pulverized, or reduced to powder by hand pressure. - 1.3.3 Non-friable Materials Material which when dry may not be crumbled, pulverized, or reduced to powder by hand pressure. ### 1.3.4 Assessment Criteria ### 1.3.4.1 Surfacing Materials Poor Condition (Significantly damaged) - ACM with one or more of the following characteristics: The surface crumbling or blistering over at least one tenth of the area if the damage is evenly distributed, or at least one quarter if the damage is localized; large areas of material hanging from the surface, delaminated, or showing adhesive failure; at least one tenth of the surface water stained or heavily gouged, marred or abraded or one quarter if the damage is localized; large accumulation of powder. dust, or debris on surfaces beneath the ceiling or wall. Fair Condition (Damaged) - ACM with one or more of the following characteristics: up to one tenth of the surface (if the damage is evenly distributed) or up to one quarter of the surface (if the damage is localized) is blistered, crumbling, water stained, or gouged marred or abraded; some accumulation of powder, dust or debris on surfaces beneath the ceiling or wall. Good Condition - ACM with no visible damage or deterioration, or showing only very limited damage or deterioration. ### 1.3.4.2 Thermal System Insulation Poor Condition (Significantly Damaged) - ACM with one or more of the following characteristics: mostly missing jackets; water damaged, crushed or heavily gouged or punctured insulation on at least one tenth of pipe runs/risers if the damage is evenly distributed, or at least one quarter if the damage is localized; powder, dust and debris on surfaces beneath pipes, boilers, tanks, etc. Fair Condition (Damaged) - ACM with one or more of the following characteristics: a few water stains or sections of missing jackets; crushed insulation or water stains, gouges, punctures, or mars on up to one tenth of the insulation if the damage is evenly distributed, or up to one quarter if the damage is localized; some accumulation of powder, dust, debris on surfaces beneath pipes, boilers, tanks, etc. Good Condition - ACM with no visible damage or deterioration, or showing only very limited damage or deterioration. - 1.3.5 Homogeneous Area An application of ACM which is uniform in color and texture and appears identical in every respect. - 1.3.6 Potential for Contact with the Material - High Service workers work in the vicinity of the material more than once a week, or the material is in a public area and accessible to building occupants. Moderate - Service workers work in the vicinity of the material once per month to once per week or the material is in a room or office and accessible to the occupants. - Low Service workers work in the vicinity of the material less than once per month or the material is visible but not within reach of building occupants. - 1.4 Asbestos Containing Material (ACM) Management The purpose of this survey is to identify Asbestos Containing Materials. It is not to be construed as an Asbestos Management Plan (AMP); however, the following recommendations should be observed when working around ACM to minimize potential health hazards: - 1.4.1 Training Provide two hour asbestos awareness training for custodial and maintenance staff. This training should also be provided on a voluntary basis for any other staff and for building occupants. - 1.4.2 Minor Release Episode A minor release is defined as less than 3 square feet/linear feet of ACM becoming dislodged or falling. Minor release control can be performed by the Facility Coordinator or building maintenance personnel upon having completed 15 hours (two hours "Asbestos Awareness" training and an additional training). If this option is not exercised, the response shall be to restrict the area, restrict air movement in the area, and contact key asbestos abatement personnel. The following actions shall be used; Restrict entry into the area by persons other than those necessary to perform the maintenance project. Post signs necessary to prevent entry by unauthorized persons. Inhibit the spread of any released fibers by thoroughly saturating the debris with wet methods. Repair the area of damaged ACM with materials such as asbestos-free spackling, plaster caulking, cement, or insulation or seal with latex paint or an encapsulant, or immediately have the appropriate response action implemented. Clean all fixtures or other components in the immediate work area using either wet methods or HEPA-vacuum. Place the asbestos debris and other cleaning material in labeled, double sealed bags or impermeable, leak tight containers. No "Regulated Area" shall be released for uncontrolled access until the following has been demonstrated - (1) The area has been visually inspected and found fiber free, and aggressive sampling performed. - (2) Area monitoring for asbestos fibers performed demonstrating a clearance of less than 0.01f/cc. ASBESTOS ENCLOSURE OPERATIONS: The enclosure should not be dismantled unless the final samples show asbestos concentrations of less than the final standard's action level (29 CFR 1910.58 action level is currently 0.01f/cc). EPA recommends 0.01f/cc be achieved before cleanup is considered complete and the enclosure can be dismantled. ASBESTOS NON-ENCLOSURE OPERATIONS: Monitoring of asbestos "regulated area" shall be the Management Planner's and Industrial Hygienist's decision based upon physical evaluation of the area. 1.4.3 Major Release Episode - A major release is defined as any falling or dislodging of friable ACM, greater than 3 square feet/linear feet. Only key asbestos abatement personnel may perform abatement. The following actions shall be taken immediately: Restrict entry into the area by persons other than those necessary to perform the maintenance project, either by physically isolating the area or by scheduling. Post signs necessary to prevent entry by unauthorized persons. Shut off or temporarily modify the air-handling system and restrict other sources of air movement. Use work practices or other controls to inhibit the spread of any released fibers; wet-methods- thoroughly saturate the debris protective clothing HEPA-vacuums mini-enclosures ### glove bags Repair the area of damaged ACM with materials such as asbestos-free spackling, plaster caulking, cement, or insulation or seal with latex paint or an encapsulant, or immediately have the appropriate response action implemented. Clean all fixtures or other components in the immediate work area using either wet methods or HEPA-vacuum. Place the asbestos debris and other cleaning material in labeled, double sealed bags or impermeable, leak tight containers. No "Regulated Area" shall be released for uncontrolled access until the following has been demonstrated - (1) The area has been visually inspected and found fiber free, and aggressive sampling performed. - (2) Area monitoring for asbestos fibers performed demonstrating a clearance of less than 0.01f/cc. ASBESTOS ENCLOSURE OPERATIONS: The enclosure should not be dismantled unless the final samples show asbestos concentrations of less than the final standard's action level (29 CFR 1910.58 action level is currently 0.01f/cc). EPA recommends 0.01f/cc be achieved before cleanup is considered complete and the enclosure can be dismantled. ASBESTOS NON-ENCLOSURE OPERATIONS: Monitoring of asbestos "regulated area" shall be the Management Planner's and Industrial Hygienist's decision based upon physical evaluation of the area. - 1.4.4 Maintenance Work (Operating and Controls for Maintaining Asbestos Floor Tile) The EPA recommends that building owners and custodial/maintenance staff consider the following basic guidelines when stripping wax or finish coat from asbestos-containing floor tile: - 1. Avoid stripping floors. Stripping floors should be done as infrequently as possible perhaps once or twice a year or less depending on circumstances. The frequency should be carefully considered as floor maintenance schedules or contracts are written or renewed. - 2. Properly train staff. Custodial or maintenance staff who strip floors should be trained to operate properly and safely the machines, pads, and floor care chemicals used at the facility. - 3. Follow appropriate work practices. Custodial or maintenance staff who strip floors should follow appropriate work practices, such as those recommended here, under informed supervision. Directions from floor tile and floor wax product manufacturers on proper maintenance procedures should be consulted. - 4. Strip floors while wet. The floor should be kept adequately wet during the stripping operation. Do NOT perform dry stripping. Prior to machine operation, an emulsion of chemical stripper in water is commonly applied to the floor with a mop to soften the wax or finish coat. After the stripping and before application of the new wax, the floor should be thoroughly cleaned, while wet. - 5. Run machine at slow speed. If the machine used to remove wax or finish coat has variable speeds, it should be run at slow speed (about 175-190 rpm) during stripping operation. - 6. Select the least abrasive pad possible. EPA recommends the machine be equipped with the least abrasive pad possible to strip wax or finish coat from the asbestoscontaining floors. - 7. Do not overstrip floors. Stop stripping when the old surface coat is removed. Overstripping can damage the floor and may cause the release of asbestos fibers. Do NOT operate a floor machine with an abrasive pad on unwaxed or unfinished floor. - 2.0 LEAD. This narrative addresses the inspection, findings, conclusions, and data accumulated by Code 468, NPWC Pensacola during lead-based-paint and soil surveys of subject buildings and grounds. - 2.1 All LBP inspections were performed by EPA trained and certified inspectors. - 2.2 Scope of Work LBP Survey consisted of the following: - Step 1 Preliminary walkthrough and thorough inspection of all accessible interior and exterior areas of selected representative building components for the purpose of locating and documenting surfaces coated with suspected LBP. - Step 2 Development and implementation of a testing protocol for all suspect LBPs. - Step 3 Performance of quality-assured XRF testing of all accessible and suspect surface coatings that are located both on interior and exterior areas of subject buildings. - Step 4 Preparation and submission of this report which includes: - a. Tables of all tested homogeneous surfaces coated with suspected LBP; - b. Hazard/Materials assessment; - c. Conclusions and recommendations; and - d. Results of field tests. ### 2.3 INSPECTION AND TESTING METHODS ### 2.31 <u>Inspection</u> The Lead-Based Paint (LBP) inspection process consists of a complete visual inspection of both interior and exterior accessible building surfaces for the presence of paints suspected of containing lead. Based on on-site observations, representative building components surfaced with homogeneous suspect paint were selected for X-Ray Fluorescence (XRF) testing. ### 2.32 Testing Equipment Inspections to determine the presence of lead in paint were accomplished by using a MAP Spectrum Analyzer (XRF) manufactured by Scitec Corporation. Calibration checks using ANSI standard (paint films and painted wood block with known lead quantities) were taken at regular intervals for Quality Assurance. The MAP XRF Spectrum Analyzer operational specifications are listed in Appendix B. ### 2.4 SUMMARY OF FINDINGS As a result of this inspection, the following building components found interior or exterior to East Martello Battery were identified to be surfaced with paint that contains lead in excess of the standards set by the Lead-Based Paint Poison Prevention Act, Section 302, and Department of Housing and Urban Development (HUD) Guidelines for Hazard Identification and Abatement in Public and Indian Housing revised September 1990 and May 1991. ### East Martello Battery | Exterior: | NONE | | |-----------|--|--| | Interior: | POOR CONDITION, BEIGE, WOOD, DOOR POOR CONDITION, BEIGE, WOOD, DOOR JAMB POOR CONDITION, WHITE, WOOD, DOOR JAMB POOR CONDITION, WHITE, WOOD, DOOR POOR CONDITION, BEIGE, METAL, DOOR POOR CONDITION, YELLOW, METAL, DOOR FRAME POOR CONDITION, WHITE, METAL, EXTERIOR DOOR | 2.9 mg/cm ²
2.9 mg/cm ²
2.2 mg/cm ²
6.6 mg/cm ²
4.2 mg/cm ²
2.3 mg/cm ² | ### 2.5 CONCLUSIONS AND RECOMMENDATIONS As a result of the inspections for LBP in East Martello Battery, code 468, Public Works Center, NAS Pensacola provides the following conclusions and recommendations. - 1. Lead-based paint was found to be present as a result of this inspection in East Martello Battery as listed in section 2.4. All data collected with assay numbers, locations, paint conditions, substrates, components, and associated results (where conclusive) are listed in APPENDIX C (XRF Data Sheets). - 2. Sample values greater than 1.6 mg/cm² on a screen setting (1.3 mg/cm² on test setting) were considered positive for containing lead. Values less than or equal to 1.6 mg/cm² on a screen setting (1.3 mg/cm² on a test setting) were considered inconclusive due to the operating parameters of the MAP Spectrum Analyzer (refer to operating specifications in APPENDIX B). Paint chip sampling and lab analyses is recommended for those assays found to be inconclusive. - 3. Lead-based-paint abatement strategies (paint removal, or LBP painted component removal) should be scheduled when building undergoes renovation or demolition. - 4. Those building components containing LBP assessed as in good condition may be managed in-place (encapsulation or enclosure). Removal is recommended if LBP components are disturbed during renovations or demolition. All are n Poor condition. 3.0 LEAD IN SOIL. This narrative addresses the sampling, findings, conclusions, and lab analysis performed by Code 468, NPWC Pensacola pertaining to soil sampling to determine level (if any) of lead contamination. This effort focused on soil around foundations of subject buildings and associated grounds. - 3.1 All soil sampling was performed by EPA trained and certified LBP inspectors. - 3.2 Federal standards have not been set for lead in soil. Although a standard soil lead action level does not exist, most authorities agree that residential soil lead levels should not exceed 500 parts per million (ppm). | SAMPLE #/
LOCATION | PERCENT SOIL
EXPOSED | RESULTS OF
ANALYSES (PPM) | |-----------------------|-------------------------|------------------------------| | | East Martello Battery | | | KW001/BACKGROUND | 50% | 260 mg/kg (ppm) | | KW002/GROUNDS | 50% | 420mg/kg (ppm) | ^{*} FOR LAB ANALYSES OF SOIL SAMPLES SEE APPENDIX D ## APPENDIX A LAB ANALYSES OF ASBESTOS SAMPLES ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001 [0) Page 1 Date 04-May-95 ### Departmental Approval Accession: 505043 Client: US NAVY PUBLIC WORKS CENTER 1026002 Project Number: Project Name: Project Location: U.S. NAVAL AIR STATION, EAST MARTELLO BATTERY KEY WEST, FL Department: Supervisor: INDUSTRIAL HYGIENE Austin M. Crow This data package has been reviewed and approved by: ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001 [0) Page 2 Date 04-May-95 | Projec | t: ct Number: ct Name: ct Location: | 505043
US NAVY PUBLIC WORKS CENTER
1026002
U.S. NAVAL AIR STATION, EAST MARTELLO BATTERY
KEY WEST, FL
TOTAL FIBROUS ASBESTOS (%)
BULK | |--------|-------------------------------------|---| | Lab | Sample | Analysis Client Sample Id | | Id | Date | Date | | Id | Date | | Date | - | OTTEHL | admbre | Id | | | | |---------------------------------|---|--------------------|--------------------|---------|---------------------------------------|--------|----|----|-----|---------| | 001
002
003
004
005 | 27-MAR-95
27-MAR-95
27-MAR-95
27-MAR-95
27-MAR-95 | n/s
n/s
n/s | 02-MAY-
02-MAY- | 95 | EM001
EM002
EM003 | | | | | | | | 27-PAR-95 | 11/5 | 02-MAY- | 95 | EMOO4 | | | | | | | Com | ponents | Labor | atory Id: | 001 | | 002 | 00 | 03 | 004 | 005 | | CHRYS
CROCI | OTILE ASBEST
DOLITE ASBEST | ros (%)
Stos (% |) | 20 | | 5 | | | | 53
7 | | TOTAL | FIBROUS ASI | BESTOS | (%) | 20 | | 5 | | | | 60 | | MASTI | COMPONENTS (C (%) | | | 3
77 | | 95 | | | | | | MORTA | R/PLÁSTER (9 | s) | | | | | | | | 40 | | UNIFO | RMITY
E COLOR. | | | ŭ | · · · · · · · · · · · · · · · · · · · | U
B | | | | U | | | E COLOR. | | | P
BR | | В | | | | I | | | | | | | | | | | | | ### Remarks: 003 004 SAMPLE NOT ANALYZED AT CLIENT'S REQUEST. SAMPLE NOT ANALYZED AT CLIENT'S REQUEST. ### ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001 (0) Page 3 Date 04-May-95 Accession: 505043 Client: US NAVY PUBLIC WORKS CENTER 1026002 Project Number: Project Name: Project Name: U.S. NAVAL AIR STATION, EAST MARTELLO BATTERY Project Location: KEY WEST, FL Test: TOTAL FIBROUS ASBESTOS (%) Laboratory Id: 006 Matrix: BULK | Lab | Sample | Analysis | |-----|--------|----------| | Id | Date | Date | Client Sample Id 006 27-MAR-95 N/S 02-MAY-95 EM005 EM006 007 27-MAR-95 N/S 02-MAY-95 007 Components ND ND TOTAL FIBROUS ASBESTOS (%) CELLULOSE FIBERS (%) 40 TAR (%) PAINT (%) WOOD (%) 60 85 10 UNIFORMITY SAMPLE COLOR. L L В W В G SAMPLE COLOR... SAMPLE COLOR... SAMPLE COLOR.... BR G [0) Page 4 Date 04-May-95 #### SUPPLEMENTARY INFORMATION #### SAMPLE TYPE: BULK ANALYTICAL TECHNOLOGIES, INC. Analyses are performed using polarized light microscopy and dispersion staining according to the U.S. EPA's Interim Method for the Determination of Asbestos in Bulk Insulation Samples (EPA-600/M4-82-020, 1982). Volumetric percentages are determined by visual estimation. Sample colors determined by the analyst may be different from those observed by the sample collector at the collection site, due to differences in lighting. ### LEGEND: N/S = Not Submitted ND = Not Detected U = Uniform L = Layered N = Nonuniform nonlayered B = Black BG = Beige BL = Blue BR = Brown CO = Copper G = Gray GL = Gold GR = Green I = Ivory MG = Magenta MR = Maroon MV = Mauve O = Orange OL = Olive P = Pink PR = Purple R = Red SL = Silver T = Tan TP = Taupe V = Violet W = White Y = Yellow C = Clear OP = Opaque TR = Transluscent S = Streaked SP = Spotted M = Multicolored MO = Mottled UA = Unable to Ascertain D = Dirty or discolored (Note: "L" preceding a color abbreviation indicates "Light", "D" indicates "Dark". For example, LG = Light Gray, DBR = Dark Brown. If two color abbreviations are combined, the first is to be read as the adjective form. For example, RBR = Reddish Brown, BLGR = Bluish Green, YT = Yellowish Tan.) This report may not be reproduced except in full without written approval from Analytical Technologies, Inc. This report applies only to the samples analyzed. ATI is accredited by the U.S. National Institute of Standards and Technology under the National Voluntary Laboratory Accreditation Program (NVLAP) for bulk asbestos fiber analysis (Laboratory ID No. 1250) and is also accredited by the American Industrial Hygiene Association (Laboratory ID No. 9133). In accordance with federal regulations, this report must not be used by clients of ATI to claim product endorsement by NVLAP or any agency of the U.S. Government. 100 HOMOGENEOUS MATERIAL SAMPLE # **AREA** FLOOR TILE, BROWN, 9" EM001, EM002, EM003 EMO04 NOTE: HOMOGENEOUS AREA B IS VISIBLE VENT PIPE, 12" ON TOP OF THE STRUCTURE ### EAST MARTELLO BATTERY ## APPENDIX B OPERATIONAL SPECIFICATIONS ## MAP XRF SPECTRUM ANALYZER OPERATIONAL SPECIFICATIONS 1. Reads from 0.0 to 200.0 mg/square centimeter in increments of 0.1 mg/square centimeter. Inconclusive ranges are: +/- 0.6 for screen (15+ seconds sample time) +/- 0.3 for test (60+ seconds sample time) +/- 0.15 for confirmation (240+ seconds sample time) - 2. The software analyzes the complete signal spectrum to determine substrate correction factor. - 3. Operating temperature: 20 degrees F to 100 degrees F - 4. Radioactive Source: 40 millicuries Cobalt -57 isotope - 5. Weight: console (9 lb) scanner (3.5 lb) ### APPENDIX C XRF DATA SHEETS OF STREET ### EAST MARTELLO BATTERY ### XRF DATA SHEET DATE:03/23/95 | Assay # | Substrate | Paint | Location | Wall | Component | Color | Туре | K-Shell | |---------|-----------|-----------|----------|---------|-------------|----------|---------|---------| | | | Condition | | Number | | | | mg/cm^2 | | | ======= | ======= | ======= | ======= | ======= | ======= | ======= | ======= | | 20 | WOOD | POOR | ROOM 2 | | 2 DOOR | BEIGE | SCREEN | 2.9 | | 21 | WOOD | POOR | ROOM 2 | | 2 DOOR JAMB | BEIGE | SCREEN | 2.9 | | 22 | WOOD | POOR | BATH 1 | | 2 DOOR JAMB | WHITE | SCREEN | 2.2 | | 23 | WOOD | POOR | BATH 1 | | 2 DOOR | WHITE | SCREEN | 6.6 | | 46 | METAL | POOR | ROOM 4 | | 2 DOOR | BEIGE | SCREEN | 4.2 | | 48 | METAL | POOR | ROOM 4 | | 2 DOOR FRAM | E YELLOW | SCREEN | 2.3 | | 52 | METAL | POOR | HALL 1 | | 1 EXT. DOOR | WHITE | SCREEN | 4.5 | ### **Navy Public Works Center Environmental Laboratory** **Laboratory Report** Lead (Pb) in Soil Lab ID Number: 9505020 A Sample Date: 12 Apr 95 28 Apr 95 Received Date: **NAS Key West** Sample Site: Job Order #: 160 4002 Bldg 3691, Code 920 NAS Pensacola, Fl. 32508 Phone (904) 452-4728/3642 Autovon 922-4728/3642 Phone #: Contact: Requester: Address: 452-4760 M. Ladner | Sample ID# | Lab | 1- | 5243 | 8 | | | 2- | 52439 | | | 3- | 52440 | | | 4- | 52441 | | | Analyst(s): | |----------------|------------|-----|-----------|--------------|-------|-------|----|------------|---------|-----------|----|-------------------|---------|--------|----|-----------|----------|-------|----------------------| | Sample Name | Requester | ŀ | (W 001 Ba | ıckgr | round | | | KW 002 Eas | t Marte | llo Batt. | | KW 003 Haw | k Backs | ground | K | N 004 Haw | k Site 1 | | Brian Nelson | | Collector Name | | ι |)J/LG | | | | | DJ/LG | | | | DJ/LG | | | D | J/LG | | | 1 | | Date/Time | Comp start | | | | | | | | | | | | | | | | | | 1 | | Collected | Comp stop | | | | | | | | | | | | | | | | | | Date(s) of analysis: | | (Military) | Grab | 1 | 2 Apr 95 | | @ | | | 12 Apr 95 | @ | | | 12 Apr 95 | @ | | 12 | 2 Apr 95 | @ | | 5 May 95 | | Sample Type | Comp/Grab | _ (| Grab | | | | | Grab | | | | Grab | | | G | rab | | | 1 | | Sample Matrix | | | Soil | | | | | Soil | | | | Soil | | | S | oil | | | 1 | | PARAMETER | | ı | D# | | 1 | Det. | 1 | ID# · | | Det. | | D# | | Det. | ID | # | | Det. | | | Metals: | METHOD # | 1- | 5243 | 3 8 u | ınits | Limit | 2- | 52439 | units | Limit | 3- | 52440 | units | Limit | 4- | 52441 | units | Limit | Preservative(s) | | Lead(Pb) | EPA 6010A | х | 26 | 0 m | ng/kg | 10 | x | 420 | mg/kg | 10 | x | 200 | mg/kg | 10 | x | 110 | mg/kg | 10 | None | WWHP/NPWC Inspections NAS Pensacola, FI 32508 Bldg 1659, code 468 | Sample ID# | Lab | 5- | 52442 | · | | 6- | 52443 | | | 7- | 52444 | | | 8- | 52445 | | | Analyst(s): | |----------------|------------|----------|------------|----------|-------|----|----------|---------|-------|----|-----------|----------|-------|----|-----------|----------|-------|----------------------| | Sample Name | Requester | | KW 005 Haw | k Site 2 | | K | W 006 Ha | wk Site | 3 | KV | V 007 Haw | k Site 4 | | KV | V 008 Haw | k Site 5 | | Brian Nelson | | Collector Name | | | DJ/LG | | | D | J/LG | | | D | I/LG | | | D. | J/LG | | | | | Date/Time | Comp start | | | | | | | | | | | | | | | | | | | Collected | Comp stop | | | | | | | | | | | | | | | | | Date(s) of analysis: | | (Military) | Grab | Γ. | 12 Apr 95 | @ | | 1 | 2 Apr 95 | @ | | 12 | Apr 95 | @ | | 12 | Apr 95 | @ | | 5 May 95 | | Sample Type | Comp/Grab | | Grab | | | G | ìrab | | | Gr | ab | | | Gr | ab | | | | | Sample Matrix | | <u> </u> | Soil | | | s | oil | | | Sc | oil | | | Sc | oil | | | | | PARAMETER | | | ID# | | Det. | 10 | D# | | Det. | ID | # | | Det. | ID | # | | Det. | | | Metals: | METHOD # | 5- | 52442 | units | Limit | 6- | 52443 | units | Limit | 7- | 52444 | units | Limit | 8- | 52445 | units | Limit | Preservative(s) | | Lead(Pb) | EPA 6010A | X | 130 | mg/kg | 10 | x | 420 | mg/kg | 10 | x | 60 | mg/kg | 10 | x | 100 | mg/kg | 10 | None | Comments: mg/kg=milligrams per kilogram(ppm). BDL=Below Detection Limit. Approved by: aboratory Director Date/Time: 08-May-95 13:20 PWC 5090/14 **End of Report**